IKT CONSULTING STRUCTURAL ENGINEERS LIMITED

Client: Mr A. Client

Project: Mapperley, Nottingham

Report: Structural Calculations

Job No.: IKT0000

Date: 1 April 2024

IKT CONSULTING STRUCTURAL ENGINEERS LIMITED

Document History

REVISION	DATE	DESCRIPTION	PREPARED BY	CHECKED BY
	01 April 2024	Structural Calculations	S. Engineer	An Engineer

© IKT Consulting Ltd. All rights reserved.

This report contains confidential information intended solely for the recipient. No part of this may be copied, reproduced or stored electronically without prior written permission from IKT Consulting Ltd. This report has been prepared in accordance with the commissioning brief and is for the client's exclusive use unless otherwise agreed in writing. IKT Consulting Ltd does not accept liability for any use of this report, other than for the purposes for which it was originally prepared and provided. Third parties should not use or rely on the contents of this report without written permission from IKT Consulting Ltd.

Introduction

The following calculations have been produced for the proposed structural alteration referred to as No. 1 Mapperley, Nottingham.

The existing property appeared to be a solid brick wall construction, with a traditional timber joist for floor level and cut timber hipped roof formed with rafters and purlins.

Scope of Design /work

IKT Consulting Limited design was limited to loose steel beams with padstones, steel column and a pad foundation, timber joists required to support roof, floors and wall.

General Notes

The Engineer has carried out the design in accordance with the information provided to him during the initial site visit and drawing provided by the client.

However, unless and until the structural fabric of the building is fully exposed, these should be treated as assumptions and not certainties and should be confirmed or otherwise by the contractor on site. Should the contractor's site discoveries indicate that these assumptions are incorrect he should advise the Engineer immediately and await the Engineers advice on how to proceed.

Sketches are to demonstrate certain features of the design and are not intended as working drawings. Where shown, details are intended to identify the main structural features. It is assumed that the work will be carried out by experienced and competent personnel, therefore exhaustive detailing is not required.

The fabricator/supplier will normally bear responsibility for the structural members up to the point where they are off-loaded onto the site: thereupon they become the responsibility of the contractor.

The delivery should be checked to ensure that it complies with the specification and that the quantities and dimensions are correct. Any discrepancies must immediately be brought to the attention of the supplier.

Contractor/builder appointed to carry out the construction work must carefully assess our proposed layouts, proposed structural specifications and existing site before undertaking construction work.

If the contractor is unsure about the length or size of any design structural element, he must contact the structural engineer for clarification before undertaking construction work.

The contractor must demonstrate a full understanding of the project before starting deconstruction/construction work, and if unclear about any part of the design the contractor must contact us before undertaking the work.

If needed client or contractor must get the local authority approval, i.e. submit the proposed design and layout for approval before undertaking any construction work.

The contractor must provide the client with details of the construction process and risks involved (i.e. damage to existing decoration, existing features and fixtures etc.) before carrying out the construction work.

Fire protection to be in accordance with relevant Building Regulations and Architect's details. New steel beams to be fire protected using British Gypsum Gyproc Fireline Pink plasterboard or 2 layers of plasterboard and skim to achieve a minimum of 30 minutes to 1-hour fire protection.

All dimensions are to be confirmed by the contractor on-site prior to construction.

All bolts to be minimum M16, Grade 8.8 u.n.o.

All internal steelwork to be shot blast to SA2.5 Standard and painted with 2 coats of zinc phosphate min 120 microns or Red Oxide Primer except as noted on drawings.

All steel beam ends are to be painted with 2No. coats bituminous paint where embedded in the external wall.

Steelwork in the cavity to receive 2No. coats of bitumastic paint.

All temporary works to the contractor's design and details.

These calculations and designs are copyright and must not be reproduced, defaced, or passed to any other person or persons for any purpose other than as originally intended.

Amendments to the design

Before placing an order or commencing work on site the contractor should be satisfied that the design brief is correct and that he has sufficient information to perform the works safely. IKT Consulting Ltd cannot be held responsible for any incorrect or incomplete design brief.

Codes of Practice

This project was generally designed using the following standards:

The Building Regs. - Approved Document A (2010)

BS EN 1991-1-1 : 2002 General actions: Densities, self-weight, imposed loads for buildings

BS EN 1991-1-1 : 2002 Actions on structures: Dead and Imposed Loads

BS EN 1993-1-1 : 2005 Design of steel structures: General rules and rules for buildings

BS EN 1996-1-1: 2005 Masonry Unreinforced & Reinforced

BS EN 1996-1-2 : 2006 Masonry Materials

P202 Steelwork Design Guide to BS5950-1:2000 Section Properties and member capacities

Calculation Method

Trimble Tekla TEDDS design software used to assist with these calculations (printouts are included) to Eurocode Standards.

Structural Consideration

All ground floor internal walls are assumed to be solid brickwork walls and are to be confirmed on site.

The condition and adequacy of existing structures and foundations to support additional loads should be confirmed onsite before commencing construction works.

Design Notes

- 1. <u>All dimensions are to be confirmed by the contractor on-site prior to construction.</u>
- 2. Steelwork to be grade S355, execution class 2and CE marked unless otherwise noted.
- 3. To minimise deflections of the existing structure, new beams must be pinned uptight to existing construction with slate or dry-pack mortar, and all mortar must be allowed to cure prior to depropping.
- 4. All work to be undertaken in accordance with the current Building Regulations Part A, Eurocode and good building practice.
- 5. Beams and lintels are to have a minimum bearing length of 100mm when perpendicular to the wall, and 150mm when parallel to the wall unless noted otherwise.
- 6. Due to significant structural works, minor post-construction deflection of brittle finishes may be expected in the existing building.
- 7. All load-bearing inner skin walls are to be minimum 100mm thick medium density (3.6N) concrete blockwork wall unless noted otherwise.
- 8. All steels that support timber work are to have the flanges pre-drilled @ 500mm centres to accept timber plates.
- 9. Drawings are not to scale.

Timber

- 10. Floor joists to be doubled up under stud partitions where parallel and noggins under partitions where perpendicular and fixed to joists underneath.
- 11. New structural timber is to be a minimum grade C24 in accordance with the latest edition of BS5268 unless otherwise noted.
- 12. All bolting to be as noted in 2mm maximum clearance holes. Where bolts are fitted with timber connectors, washers of the appropriate size and thickness must be used in accordance with BS 5268.
- 13. Multiple timber members are to be bolted together using M12 grade 4.6 bolts with 50x50x3mm thick washers at 800mm maximum centres.
- 14. All screwing operations are to be installed in predrilled holes.
- 15. Wall plates are to be generally 100 x 75 unless noted otherwise fixed to walls using 30 x 2.5 galvanised mild steel vertical restraint straps 900mm long at maximum 1250mm centres with 6no screws in polymide plugs equally spaced and to current Building Regulations.

Design Summary - Member Sizes

Beam (B1):	1No 203x203 UC 46, Grade S355, weld 6mm thick 230mm wide plate to top flange. Span dimension to be confirmed by builder on site.
Beam (B2):	1No 203x203 UC 46, Grade S355, weld 6mm thick 230mm wide plate to top flange. Span dimension to be confirmed by builder on site.
Beam (B3):	1Nos 254x254 UC 89, Grade S355. Span dimension to be confirmed by builder on site.
Beam (B4):	1No 180x90x26 PFC, Grade S355 galvanised, with 10mm thick, 300mm (TBC) wide plate welded to bottom. Span dimension to be confirmed by builder on site.
Column (C1):	1No 152x152 UC 30, Grade S355. Height dimension to be confirmed by builder on site.
Trimmer (T1):	1No 150x90x24 PFC, Grade S355 galvanised. Span dimension to be confirmed by builder on site.
Trimmer (T2):	1No 150x90x24 PFC, Grade S355 galvanised. Span dimension to be confirmed by builder on site.
Floor Joist (FJ):	50 x 175, Grade C24 Timber, at 400mm centres.
Roof Joist (RJ):	50 x 150, Grade C24 Timber, at 400mm centres.
L 1:	1No. Naylor R6 or similar 100 (W) x 140 (H) Prestress Concrete Lintel.
L 2:	2No. Naylor R6 or similar 100 (W) x 140 (H) Prestress Concrete Lintel.

Padstones

PS 1: 1No 440 (L) x 100 (W) x 215 (H), C35 Mass concrete Padstone.

PS 2: 1No 300 (L) x 100 (W) x 140 (H), C35 Mass concrete Padstone.

Foundations

F 1: 1000 (L) x 1000 (W) x 600 (Deep) min., C35 Mass fill concrete pad.

F 2: 1200 (L) x 1200 (W) x 600 (Deep) min., C35 Mass fill concrete pad.

Our site visit was limited to visual inspection and the contractor/builder appointed to carry out the construction work must carefully assess our proposed layouts, proposed structural specifications against the existing site by removing the building covering and plasterboards to expose the structure before ordering materials or commencing work on-site and undertaking construction work. If unclear about any part of the design the contractor must contact IKT Consulting before ordering materials and allow a sufficient time scale of no less than 48 hours to resolve any discrepancy.

Integrity | Knowledge | Teamwork

Ground Floor Showing Structure Above

Address: 6 David Lane, Basford, Nottingham, NG6 0JU T. 0115 697 6006 | M. 07950 477550 | E. info@iktconsulting.co.uk | W. www.iktconsulting.co.uk Reg no. 12762351 | VAT No. 424 9257 84

First Floor Level Structure

Minimum bearing length of 100mm when perpendicular to the wall, and 200mm when parallel to the wall unless noted otherwise.

Detail 2 - Typical Beam-To-Beam Connection

Detail 5 - Typical Column Frame Cramps

Integrity | Knowledge | Teamwork

Load Schedule

Unfactored working loads.						
Dead	<u>, kN/m²</u>		Imposed, kN/m ²			
Roof (sloping rafters)		_				
Tiles	0.70	Snow	0.60			
Batton, felt, rafters	0.15	Attic storage	0.25			
Insulation	0.05	Total impo	osed,0.85_			
Ceiling	0.15					
Total dead, on plan	1.48					
Poof (Flat rafters)						
Asphalt unterproof	0.45	Snow (drift)	1.00			
Asphan waterproof	0.45	Show (drift)	1.00			
Insulation	0.15	Total imp				
Ceiling & services	0.05	i otai mipo	1.00			
Total dead	0.85					
Total dead	0.00					
First floor						
Plywood	0.20	Live	1.50			
Joist	0.20	Partitions	0.50			
Ceiling	0.15	Total imp	oosed 2.00			
Total dead	0.55					
Exterior solid wall		Int partition wall				
215 solid brickleaf	3.87	Brickwo	k 2.20			
Plaster	0.30	Plaster -	both sides 0.60			
			Total dead 2.80			
Total dead	4.17					

<u>Beam – B1</u>

	Beam span =	3.75 m			
		<u>Area Load</u>	Loaded Width/H	<u>Height</u> <u>UDL</u> , unfactored	
Roof					
Sloping rafters	Dead	1.48 kN/m ²	2.00 m	2.97 kN/m	
	Live	0.85 kN/m ²	2.00 m	1.70 kN/m	•
Roof					
Flat rafters	Dead	0.85 kN/m ²	1.25 m	1.06 kN/m	
	Live	1.00 kN/m ²	1.25 m	1.25 kN/m	
Wall					
Ext Solid wall	Dead	4.17 kN/m ²	2.50 m	10.43 kN/m	
	Live	0.00 kN/m ²	2.50 m	0.00 kN/m	

STEEL BEAM ANALYSIS & DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

Applied loading

Load combinations

Beam loads

 $\label{eq:permanent} \begin{array}{l} \mbox{Permanent self weight of beam} \times 1 \\ \mbox{Permanent full UDL 14.46 kN/m} \\ \mbox{Variable full UDL 2.95 kN/m} \end{array}$

Support A

Support B

Permanent \times 1.35 Variable \times 1.50 Permanent \times 1.35 Variable \times 1.50 Permanent \times 1.35 Variable \times 1.50

Analysis results Maximum moment Maximum shear Deflection Maximum reaction at support A Unfactored permanent load reaction at support A Unfactored variable load reaction at support A Maximum reaction at support B Unfactored permanent load reaction at support B Unfactored variable load reaction at support B

$M_{max} = 43.2 \text{ kNm}$ $V_{max} = 46.1 \text{ kN}$ $\delta_{max} = 4.8 \text{ mm}$ $R_{A_max} = 46.1 \text{ kN}$ $R_{A_permanent} = 28 \text{ kN}$ $R_{A_variable} = 5.5 \text{ kN}$ $R_B_max = 46.1 \text{ kN}$ $R_B_permanent = 28 \text{ kN}$ $R_B_variable = 5.5 \text{ kN}$

 $t = max(t_f, t_w) = 11.0 mm$

 $f_y = 355 \text{ N/mm}^2$ $f_u = 470 \text{ N/mm}^2$

E = 210000 N/mm²

4−72

-203.6-

R_{B_min} = **46.1** kN

Section details

Section type

Steel grade

EN 10025-2:2004 - Hot rolled products of structural steels

Nominal thickness of element Nominal yield strength Nominal ultimate tensile strength Modulus of elasticity UC 203x203x46 (British Steel Section Range 2022 (BS4-1)) S355

Partial factors - Section 6.1

Resistance of cross-sections	γ _{M0} = 1.00
Resistance of members to instability	γ _{M1} = 1.00
Resistance of tensile members to fracture	γ _{M2} = 1.10

.

Lateral restraint				
	Span 1 has lateral restraint at s	supports only		
Effective length factors				
Effective length factor in major axis	K _y = 1.000			
Effective length factor in minor axis	K _z = 1.000			
Effective length factor for torsion	$K_{LT.A} = 1.200 + 2 \times h$			
	K _{LT.B} = 1.000			
Classification of cross sections - Section 5.5				
	$\boldsymbol{\epsilon} = \sqrt{[235 \text{ N/mm}^2 / f_y]} = \boldsymbol{0.81}$			
Internal compression parts subject to bending	- Table 5.2 (sheet 1 of 3)			
Width of section	c = d = 155.8 mm			
	c / t_w = 26.6 $\times\epsilon$ <= 72 $\times\epsilon$	Class 1		
Outstand flanges - Table 5.2 (sheet 2 of 3)				
Width of section	c = (b - t _w - 2 × r) / 2 = 85.5 mm	ı		
	$c / t_f = 9.6 \times \varepsilon \le 10 \times \varepsilon$	Class 2		
			Section is class 2	
Check shear - Section 6.2.6				
Height of web	hw = h - 2 × tf = 181.2 mm			
Shear area factor	n = 1.000			
	$h_w/t_w < 72 \times \epsilon/n$			
	Shear bu	ckling resistanc	e can be ignored	
Design shear force	$V_{Ed} = max(abs(V_{max}), abs(V_{min}))$) = 46.1 kN	-	
Shear area - cl 6.2.6(3)	$A_v = \max(A - 2 \times b \times t_f + (t_w + 2))$	\times r) \times t _f , $\eta \times$ h _w \times	< t _w) = 1802 mm ²	
Design shear resistance - cl 6.2.6(2)	$V_{c,Rd} = V_{pl,Rd} = A_v \times (f_y / \sqrt{[3]}) / \gamma$	мо = 369.3 kN		
	PASS - Design shear resista	ance exceeds de	esign shear force	
Check bending moment major (y-y) axis - Sect	ion 6.2.5			
Design bending moment	M _{Ed} = max(abs(M _{s1_max}), abs(N	l _{s1_min})) = 43.2 kN	lm	
Design bending resistance moment - eq 6.13	$M_{c,Rd} = M_{pl,Rd} = W_{pl,y} \times f_y / \gamma_{M0} =$	178.1 kNm		
Slenderness ratio for lateral torsional buckling				
Correction factor - Table 6.6	k _c = 0.94			
	$C_1 = min(1 / k_c^2, 3.5) = 1.132$			
Curvature factor	$g = \sqrt{[1 - (I_z / I_y)]} = 0.815$			
Poissons ratio	ν = 0.3			
Shear modulus	$G = E / [2 \times (1 + v)] = 80769 N/$	/mm²		
Unrestrained length	$L = (1.2 \times L_{s1} + 2 \times h + 1.0 \times L_s$	a1) / 2 = 4328 mm	l	
Elastic critical buckling moment	$M_{cr} = C_1 \times \pi^2 \times E \times I_z / (L^2 \times g)$	$\times \sqrt{[I_w / I_z + L^2 \times G]}$	$3 \times I_{t} / (\pi^{2} \times E \times E)$	
	I _z)] = 338.6 kNm			
Slenderness ratio for lateral torsional buckling	$\overline{\lambda}_{\text{LT}} = \sqrt{(W_{\text{pl.y}} \times f_{\text{y}} \ / \ M_{\text{cr}})} = \textbf{0.725}$	i		
Limiting slenderness ratio	$\overline{\lambda}_{LT,0} = 0.4$			
	$\overline{\lambda}_{LT} > \overline{\lambda}_{LT,0}$ - Lateral torsi	onal buckling c	annot be ignored	
Design resistance for buckling - Section 6.3.2.	1			

Buckling curve - Table 6.5	b
Imperfection factor - Table 6.3	$\alpha_{LT} = 0.34$
Correction factor for rolled sections	$\beta = 0.75$
LTB reduction determination factor	$\phi_{\text{LT}} = 0.5 \times [1 + \alpha_{\text{LT}} \times (\overline{\lambda}_{\text{LT}} - \overline{\lambda}_{\text{LT},0}) + \beta \times \overline{\lambda}_{\text{LT}}^2] = 0.753$
LTB reduction factor - eq 6.57	$\chi_{\text{LT}} = \min(1 / [\phi_{\text{LT}} + \sqrt{(\phi_{\text{LT}}^2 - \beta \times \overline{\lambda}_{\text{LT}}^2)}], 1, 1 / \overline{\lambda}_{\text{LT}}^2) = 0.857$
Modification factor	f = min(1 - 0.5 × (1 - k _c)× [1 - 2 × ($\overline{\lambda}_{LT}$ - 0.8) ²], 1) = 0.970

Integrity | Knowledge | Teamwork

Modified LTB reduction factor - eq 6.58	$\chi_{LT,mod} = min(\chi_{LT} / f, 1) = 0.883$	
Design buckling resistance moment - eq 6.55	$M_{b,Rd} = \chi_{LT,mod} \times W_{pl.y} \times f_y \ / \ \gamma_{M1} = \textbf{157.3 kNm}$	
PASS - Design	buckling resistance moment exceeds design bending mom	ent
Check vertical deflection - Section 7.2.1		
Consider deflection due to permanent and variable	loads	
Limiting deflection	$\delta_{\text{lim}} = L_{s1} / 360 = 10.4 \text{ mm}$	

 $\delta = max(abs(\delta_{max}), abs(\delta_{min})) = 4.757 \text{ mm}$

PASS - Maximum deflection does not exceed deflection limit

Beam	– B2
Douin	

Maximum deflection span 1

	Beam span =	5.40 m				
		Area	Load	Loaded	<u>l Width/Heigh</u> t	UDL. unfactored
Roof						
Sloping rafters	Dea	ad	1.48 kN/m ²	2	.00 m	2.97 kN/m
	Live	2	0.85 kN/m ²	2	.00 m	1.70 kN/m
Roof						
Flat rafters	Dea	ad	0.85 kN/m ²	1	.25 m	1.06 kN/m
	Live	2	1.00 kN/m ²	1	25 m	1.25 kN/m
Wall						
Ext Solid wall	Dea	ad	4.17 kN/m ²	2	.50 m	10.43 kN/m
	Live	2	0.00 kN/m ²	2	.50 m	0.00 kN/m

STEEL BEAM ANALYSIS & DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

Support conditions

Support A

Support B

Support C

Applied loading Beam loads

Load combinations

Vertically restrained Rotationally free Vertically restrained Rotationally free Vertically restrained Rotationally free

Permanent self weight of beam × 1 Permanent full UDL 14.46 kN/m Variable full UDL 2.95 kN/m

Support A

Support B

Support C

Analysis results

Maximum moment Maximum moment span 1 Maximum moment span 2 Maximum shear Maximum shear span 1 Maximum shear span 2 Deflection Deflection span 1 Deflection span 2 Maximum reaction at support A Unfactored permanent load reaction at support A Unfactored variable load reaction at support A Maximum reaction at support B Unfactored permanent load reaction at support B Unfactored variable load reaction at support B Maximum reaction at support C Unfactored permanent load reaction at support C Unfactored variable load reaction at support C

Mmax = 14.1 kNm Ms1 max = 14.1 kNm $M_{s2 max} = 11 \text{ kNm}$ Vmax = 40.6 kN Vs1 max = 26.4 kN Vs2 max = 40.6 kN $\delta_{max} = 0.7 \text{ mm}$ $\delta_{s1 max} = 0.7 mm$ $\delta_{s2 max} = 0.4 mm$ RA max = 26.4 kN RA Permanent = 16 kN RA variable = 3.2 kN R_B max = 83 kN RB Permanent = 50.4 kN RB Variable = 10 kN Rc max = 23.3 kN Rc_Permanent = 14.1 kN Rc_variable = 2.8 kN

Permanent \times 1.35 Variable \times 1.50 Permanent \times 1.35 Variable \times 1.50

$$\begin{split} M_{min} &= -22.5 \text{ kNm} \\ M_{s1_min} &= -22.5 \text{ kNm} \\ M_{s2_min} &= -22.5 \text{ kNm} \\ V_{min} &= -42.4 \text{ kN} \\ V_{s1_min} &= -42.4 \text{ kN} \\ V_{s2_min} &= -42.4 \text{ kN} \\ V_{s2_min} &= -42.4 \text{ kN} \\ \delta_{s1_min} &= -42.4 \text{ kN} \\ \delta_{s1_min} &= -42.4 \text{ kN} \\ \delta_{s2_min} &= -42.4 \text{ kN} \\ \delta_{s3_min} &= -$$

R_{B_min} = **83** kN

Rc_min = 23.3 kN

$h_w / t_w < 72 imes \epsilon / \eta$

Shear buckling resistance can be ignored
$V_{Ed} = max(abs(V_{max}), abs(V_{min})) = 42.4 \text{ kN}$
$A_{v} = max(A - 2 \times b \times t_{f} + (t_{w} + 2 \times r) \times t_{f}, \eta \times h_{w} \times t_{w}) = 1802 \text{ mm}^{2}$
$V_{c,Rd} = V_{pl,Rd} = A_v \times (f_y / \sqrt{[3]}) / \gamma_{M0} = 369.3 \text{ kN}$
PASS - Design shear resistance exceeds design shear force

Check bending moment at span 1 major (y-y) axis - Section 6.2.5

Design bending moment Design bending resistance moment - eq 6.13

Design shear resistance - cl 6.2.6(2)

Design shear force Shear area - cl 6.2.6(3)

$$\begin{split} M_{Ed} &= max(abs(M_{s1_max}), \, abs(M_{s1_min})) = \textbf{22.5 kNm} \\ M_{c,Rd} &= M_{pl,Rd} = W_{pl,y} \times f_y \, / \, \gamma_{M0} = \textbf{178.1 kNm} \end{split}$$

Slenderness ratio for lateral torsional buckling	
Correction factor - Table 6.6	k _c = 0.706
	$C_1 = min(1 / k_c^2, 3.5) = 2.004$
Curvature factor	$g = \sqrt{[1 - (I_z / I_y)]} = 0.815$
Poissons ratio	v = 0.3
Shear modulus	G = E / [2 × (1 + v)] = 80769 N/mm ²
Unrestrained length	$L = (1.2 \times L_{s1} + 2 \times h + 1.0 \times L_{s1}) / 2 = 3283 \text{ mm}$
Elastic critical buckling moment	$M_{cr} = C_1 \times \pi^2 \times E \times I_{Z} / (L^2 \times g) \times \sqrt{[I_{W} / I_{Z} + L^2 \times G \times I_{t} / (\pi^2 \times E \times G) \times I_{T} }$
	l _z)] = 913.7 kNm
Slenderness ratio for lateral torsional buckling	$\overline{\lambda}_{LT} = \sqrt{(W_{pl.y} \times f_y / M_{cr})} = 0.441$
Limiting slenderness ratio	$\overline{\lambda}_{LT,0} = 0.4$

Design resistance for buckling - Section 6.3.2.1

Buckling curve - Table 6.5bImperfection factor - Table 6.3 $\alpha_{LT} = 0.34$ Correction factor for rolled sections $\beta = 0.75$ LTB reduction determination factor $\psi_{LT} = 0.5 \times [1 + \alpha_{LT} \times (1 + \sqrt{\phi})]$ LTB reduction factor - eq 6.57 $\chi_{LT} = \min(1 / [\phi_{LT} + \sqrt{\phi})]$ Modification factor $f = \min(1 - 0.5 \times (1 - k_{c}))$ Modified LTB reduction factor - eq 6.58 $\chi_{LT,mod} = \min(\chi_{LT} / f, 1)$ Design buckling resistance moment - eq 6.55 $M_{b,Rd} = \chi_{LT,mod} \times W_{pLy} > PASS - Design buckling resistance moment$

b
$\alpha_{LT} = 0.34$
$\beta = 0.75$
$\phi_{\text{LT}} = 0.5 \times [1 + \alpha_{\text{LT}} \times (\overline{\lambda}_{\text{LT}} - \overline{\lambda}_{\text{LT},0}) + \beta \times \overline{\lambda}_{\text{LT}}^2] = 0.580$
$\chi_{LT} = \min(1 / [\phi_{LT} + \sqrt{(\phi_{LT}^2 - \beta \times \overline{\lambda}_{LT}^2)}], 1, 1 / \overline{\lambda}_{LT}^2) = 0.984$
$f = \min(1 - 0.5 \times (1 - k_c) \times [1 - 2 \times (\overline{\lambda}_{LT} - 0.8)^2], 1) = 0.891$
$\chi_{LT,mod} = min(\chi_{LT} / f, 1) = 1.000$
$M_{b,Rd} = \chi_{LT,mod} \times W_{pl.y} \times f_y \ / \ \gamma_{M1} = \textbf{178.1} \ kNm$
the station of the second state of the state of the state of the second state of the s

 $\overline{\lambda_{LT}} > \overline{\lambda_{LT,0}}$ - Lateral torsional buckling cannot be ignored

PASS - Design buckling resistance moment exceeds design bending moment

Consider deflection due to	rmanent and variable loads
Limiting deflection	$\delta_{\text{lim}} = L_{s1} / 360 = 7.8 \text{ mm}$
Maximum deflection span	$\delta = \max(abs(\delta_{max}), abs(\delta_{min})) = 0.67 \text{ mm}$
	PASS - Maximum deflection does not exceed deflection limit

Padstone - P1

MASONRY BEARING DESIGN

Check vertical deflection - Section 7.2.1

In accordance with EN1996-1-1:2005 + A1:2012, incorporating Corrigenda February 2006 and July 2009 and the UK National Annex.

Tedds calculation version 1.0.14

Summary table

Load	Local concentration		Spr	eader	Utilisation	
	Design Resistance		Design	Resistance]	
	force		stress			

1	82.0 kN	37.0 kN	1.88 N/mm²	3.19 N/mm ²	0.590	Pass	
Masonny na	nol dotaile						
Panel length Load bearing Effective thic	Panel length $L = 1000 \text{ mm}$ Load bearing leaf thickness $t = 100 \text{ mm}$ Effective thickness $t_{ef} = 100 \text{ mm}$		Panel I Effectiv	Panel height Effective height		2700 mm = 2700 mm	
Masonry ma	aterial details						
Unit type		Clay - Gr	oup 1				
Mean masor Mortar type Characteristi	rry strength c strength	f _b = 21.0 M M4 - Gen f _k = 6.38 M	V/mm ² eral Purpose V/mm ²	Specifi Mortar	c weight of unit strength	S γ = f _m =	22 kN/m ³ • 4.0 N/mm ²
Design com	pressive stren	gth of masor	nry				
Category of	manufacturing	Category	T II	Class of	of execution co	ntrol Cla	ss 2
Partial factor	for material	γ _M = 3.00		Design	strength of ma	sonry f _d =	2.13 N/mm ²
Partial safet	y factors for d	esign loads					
Permanent p	artial factor	γ _{fG} = 1.35		Variabl	e partial factor	γ _{fQ} =	= 1.50
Superimpos	ed vertical loa	ding details					
Permanent L Eccent. of pe	ermanent UDL at top of wall $g_k = 1.00 \text{ kN/m}$		Variabl Eccent	e UDL at top of . of variable UD	fwall q _k = DL e _{qu}	q _k = 0.50 kN/m e _{qu} = 0 mm	
Slendernes	s ratio of maso	nrv wall - Se	ction 5.5.1.4				
Slenderness	ratio limit	λlim = 27		Slende	rness ratio	λ =	27.0
				PASS - Sler	nderness ratio	is less than	slenderness limit
Concentrated Load 1 details							
				31.96 kN ←380-→			
			88.1				

1000-

-1000-

►

Permanent load Eccentricity of load Width of load Distance to right edge

$$\label{eq:Gkc1} \begin{split} G_{kc1} &= \textbf{49.60} \ kN \\ e_{c1} &= \textbf{0} \ mm \\ w_{c1} &= \textbf{100} \ mm \\ r_{11} &= \textbf{314} \ mm \end{split}$$

4

Variable load Length of load Height of load Distance to nearest edge $Q_{kc1} = 10.00 \text{ kN}$ $L_{c1} = 133 \text{ mm}$ $h_{c1} = 2700 \text{ mm}$ $a_{11} = 314 \text{ mm}$

Walls subjected to concentrated loads - Section 6.1.3

Design concentrated load NEdc1 = 81.96 kN Design resistance NRdc1 = 37.03 kN Applied concentrated load exceeds design resistance, spreader required! Design of spreader beam Type of spreader **Concrete padstone** Type of load Point load Length of spreader L_{sp1} = **440** mm Width of spreader w_{sp1} = **100** mm Eccentricity of load e_{sp1} = **0** mm Height of spreader h_{sp1} = **215** mm Modulus of elasticity Esp1 = 29962 N/mm2 Maximum moment MEdsp1 = 4.49 kNm Maximum shear V_{Edsp1} = 40.98 kN Allowable stress σ_{Rdsp1} = **3.19** N/mm² Design stress $\sigma_{Edsp1} = 1.88 \text{ N/mm}^2$ PASS - Design stress under spreader is less than the allowable bearing stress Walls subjected to mainly vertical loading - Section 6.1.2 Vertical load at mid-height NEd1 = 88.11 kN/m Design resistance NRd1 = 91.32 kN/m PASS - Design value of vertical resistance exceeds applied vertical load Beam – B3 Beam span = 5.80 m Loaded Width/Height UDL, unfactored Area Load Roof 1.48 kN/m² Sloping rafters Dead 2.00 m 2.97 kN/m 0.85 kN/m² Live 2.00 m 1.70 kN/m 1st Floor Intermediate floors 1.60 kN/m 0.55 kN/m² Dead 2.90 m 5.80 kN/m 2.00 kN/m² 2.90 m Live Wall Int brick wall 2.80 kN/m² 7.56 kN/m 2.70 m Dead 0.00 kN/m² 0.00 kN/m Live 2.70 m

STEEL BEAM ANALYSIS & DESIGN (EN1993-1-1:2005)

In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April 2009 and the UK national annex

Shear Force Envelop

66.3

^{KN} 76.356 0.0-

mm

Support conditions

Support A

Support B

Applied loading Beam loads Vertically restrained Rotationally free Vertically restrained Rotationally free

5800

Permanent self weight of beam × 1 Permanent partial UDL 12.12 kN/m from 2480 mm to 5800 mm Variable partial UDL 7.5 kN/m from 2480 mm to 5800 mm Permanent partial UDL 1 kN/m from 0 mm to 2480 mm Variable partial UDL 1 kN/m from 0 mm to 2480 mm B1 - Permanent point load 27.7 kN at 2480 mm Variable point load 5.5 kN at 2480 mm B2 - Permanent point load 15.8 kN at 2480 mm Variable point load 3.2 kN at 2480 mm

Load combinations

Support A

Support B

Analysis results Maximum moment Maximum moment span 1 segment 1 Maximum moment span 1 segment 2 Maximum shear Maximum shear span 1 segment 1 Maximum shear span 1 segment 2 Deflection segment 3 Maximum reaction at support A Unfactored permanent load reaction at support A Unfactored variable load reaction at support A

$$\begin{split} M_{max} &= 176.9 \text{ kNm} \\ M_{s1_seg1_max} &= 176.9 \text{ kNm} \\ M_{s1_seg2_max} &= 172.1 \text{ kNm} \\ V_{max} &= 76.4 \text{ kN} \\ V_{s1_seg1_max} &= 76.4 \text{ kN} \\ V_{s1_seg2_max} &= 0 \text{ kN} \\ \delta_{max} &= 13.4 \text{ mm} \\ R_{A_max} &= 76.4 \text{ kN} \\ R_{A_Permanent} &= 40.9 \text{ kN} \\ R_{A \text{ variable}} &= 14.1 \text{ kN} \end{split}$$

Permanent \times 1.35 Variable \times 1.50 Permanent \times 1.35 Variable \times 1.50 Permanent \times 1.35 Variable \times 1.50

101.1

$$\begin{split} M_{min} &= 0 \ kNm \\ M_{s1_seg1_min} &= 0 \ kNm \\ M_{s1_seg2_min} &= 0 \ kNm \\ V_{min} &= -101.1 \ kN \\ V_{s1_seg1_min} &= -17.6 \ kN \\ V_{s1_seg2_min} &= -101.1 \ kN \\ \delta_{min} &= 0 \ mm \\ R_{A_min} &= 76.4 \ kN \end{split}$$

Integrity | Knowledge | Teamwork

Maximum reaction at support B Unfactored permanent load reaction at support I Unfactored variable load reaction at support B	$R_{B_{max}} = 101.1 \text{ kN}$ $R_{B_{Permanent}} = 50.4 \text{ kN}$ $R_{B_{Variable}} = 22 \text{ kN}$	R _{B_min} = 101.1 kN
Section details		
Section type	UC 254x254x89 (British Steel	Section Range 2022 (BS4-1))
Steel grade	S355	
EN 10025-2:2004 - Hot rolled products of stru	ictural steels	
Nominal thickness of element	$t = max(t_f, t_w) = 17.3 mm$	
Nominal yield strength	f _y = 345 N/mm ²	
Nominal ultimate tensile strength	f _u = 470 N/mm ²	
Modulus of elasticity	E = 210000 N/mm ²	
17.3		
<u>→</u> <u>+</u>		
G ^C G ^C		
← Partial factors - Section 6.1 Resistance of cross-sections Resistance of members to instability	256.3 γ _{M0} = 1.00 γ _{M1} = 1.00	
Resistance of tensile members to fracture	γм2 = 1.10	
Lateral restraint Effective length factors	Span 1 has lateral restraint at s	upports plus midspan
Effective length factor in major axis	K _v = 1.000	
Effective length factor in minor axis	K _z = 1.000	
Effective length factor for torsion	$K_{LT.A} = 1.200 + 2 \times h$	
	K _{LT.B} = 1.000	
Classification of cross sections - Section 5.5		
	$s = \sqrt{235} N/mm^2 / f.1 = 0.83$	
Internal compression parts subject to bendir	ng - Table 5.2 (sheet 1 of 3)	
Width of section	c = d = 185.7 mm	
	$c \ / \ t_w = 21.8 \times \epsilon <= 72 \times \epsilon$	Class 1
Outstand flanges - Table 5.2 (sheet 2 of 3)		
Width of section	$c = (b - t_w - 2 \times r) / 2 = 103 \text{ mm}$	
	$c \ / \ t_f = 7.2 \times \epsilon <= 9 \times \epsilon$	Class 1
		Section is class 1
Check shear - Section 6.2.6		
Hoight of woh	h _ h 0 v + 00E 7 mm	
	$11W = 11 - 2 \times t_1 = 223.1$ [1][[]	

Shear	area	factor
-------	------	--------

Design shear force Shear area - cl 6.2.6(3) Design shear resistance - cl 6.2.6(2) η = **1.000**

 $h_w \, / \, t_w < 72 \times \epsilon \, / \, \eta$

 $\label{eq:VEd} \begin{array}{l} \textbf{Shear buckling resistance can be ignored} \\ V_{Ed} = max(abs(V_{max}), abs(V_{min})) = \textbf{101.1 kN} \\ A_v = max(A - 2 \times b \times t_f + (t_w + 2 \times r) \times t_f, \ \eta \times h_w \times t_w) = \textbf{3538 mm}^2 \\ V_{c,Rd} = V_{pl,Rd} = A_v \times (f_y \ / \ \sqrt{[3]}) \ / \ \gamma_{M0} = \textbf{704.8 kN} \\ \textbf{PASS - Design shear resistance exceeds design shear force} \end{array}$

Check bending moment at span 1 segment 1 major (y-y) axis - Section 6.2.5

Design bending moment Design bending resistance moment - eq 6.13
$$\begin{split} M_{Ed} &= max(abs(M_{s1_seg1_max}), \, abs(M_{s1_seg1_min})) = 176.9 \ \text{kNm} \\ M_{c,Rd} &= M_{pl,Rd} = W_{pl,Y} \times f_y \ / \ \gamma_{M0} = 429.8 \ \text{kNm} \end{split}$$

Slenderness ratio for lateral torsional buckling

Correction factor - Table 6.6	kc = 0.823
	$C_1 = min(1 / k_c^2, 3.5) = 1.478$
Curvature factor	$g = \sqrt{[1 - (I_z / I_y)]} = 0.815$
Poissons ratio	v = 0.3
Shear modulus	G = E / [2 × (1 + v)] = 80769 N/mm ²
Unrestrained length	L = $(1.2 \times L_{s1_seg1} + 2 \times h + 1.0 \times L_{s1_seg1}) / 2 = 3450 \text{ mm}$
Elastic critical buckling moment	$M_{cr} = C_1 \times \pi^2 \times E \times I_z / (L^2 \times g) \times [I_w / I_z + L^2 \times G \times I_t / (\pi^2 \times E \times I_z + L^2 \times G \times I_t / (\pi^2 \times E \times I_z + L^2 \times G \times I_t / (\pi^2 \times E \times G \times I_t + L^2 \times G \times I_t / (\pi^2 \times E \times G \times G \times I_t / (\pi^2 \times E \times G $
	l _z)] = 2454.2 kNm
Slenderness ratio for lateral torsional buckling	$\overline{\lambda}_{LT} = \sqrt{(W_{pl.y} \times f_y / M_{cr})} = 0.418$
Limiting slenderness ratio	$\overline{\lambda}_{LT,0} = 0.4$

Design resistance for buckling - Section 6.3.2.1

Buckling curve - Table 6.5 Imperfection factor - Table 6.3 Correction factor for rolled sections LTB reduction determination factor LTB reduction factor - eq 6.57 Modification factor Modified LTB reduction factor - eq 6.58 Design buckling resistance moment - eq 6.55

b
α _{LT} = 0.34
β = 0.75
$\phi_{\text{LT}} = 0.5 \times [1 + \alpha_{\text{LT}} \times (\overline{\lambda}_{\text{LT}} - \overline{\lambda}_{\text{LT},0}) + \beta \times \overline{\lambda}_{\text{LT}}^2] = 0.569$
$\chi_{LT} = \min(1 / [\phi_{LT} + \sqrt{(\phi_{LT}^2 - \beta \times \overline{\lambda}_{LT}^2)}], 1, 1 / \overline{\lambda}_{LT}^2) = 0.993$
f = min(1 - 0.5 × (1 - k _c)× [1 - 2 × ($\overline{\lambda}_{LT}$ - 0.8) ²], 1) = 0.937
$\chi_{\text{LT,mod}} = \min(\chi_{\text{LT}} / f, 1) = 1.000$
$M_{b,Rd} = \chi_{LT,mod} \times W_{pl.y} \times f_y \ / \ \gamma_{M1} = \textbf{429.8} \ kNm$
welling resistance memort evende design banding memory

 $\overline{\lambda_{LT}} > \overline{\lambda_{LT,0}}$ - Lateral torsional buckling cannot be ignored

PASS - Design buckling resistance moment exceeds design bending moment

Check vertical deflection - Section 7.2.1

Consider deflection due to permanent and variable loads

Limiting deflection		$\delta_{\text{lim}} = L_{s1} / 360 = 16.1 \text{ mm}$
Maximum deflection span	1	$\delta = \max(abs(\delta_{max}), abs(\delta_{min})) = 13.397 \text{ mm}$
		PASS - Maximum deflection does not exceed deflection limit

Padstone – P2

MASONRY BEARING DESIGN

In accordance with EN1996-1-1:2005 + A1:2012, incorporating Corrigenda February 2006 and July 2009 and the UK National Annex.

Tedds calculation version 1.0.14

Summary table

Load Local concentration Spreader Utilisation

	Design force	Resistance	Design stress	Resista	nce			
1	101.0 kN	119.7 kN	N/A	N/A	0	.844	Pass	
lasonry pa	nel details							
Panel length		L = 975 mm	1	Pan	el heig	ght		h = 2700 mm
_oad bearing	g leaf thickness	t = 100 mm		Effe	ctive ł	neight		h _{ef} = 2700 mm
Effective thic	kness	t _{ef} = 100 mm	n					
Masonry ma	aterial details							
Unit type		Clay - Grou	ıp 1					
Mean masor	nry strength	f _b = 51.0 N/r	mm²	Spe	cific w	eight of ur	nits	γ = 22 kN/m ³
Mortar type		M4 - Gener	al Purpose	Mor	ar str	ength		f _m = 4.0 N/mm ²
Characterist	ic strength	f _k = 11.88 N	l/mm ²					
Desian com	pressive strend	th of masonry	v					
Category of	manufacturing	Category II	,	Clas	s of e	xecution o	control	Class 2
Partial factor	for material	γ _M = 3.00		Des	an st	enath of n	nasonrv	$f_d = 3.93 \text{ N/mm}^2$
Dortiol cof-		oign lood-		200	3			
Partial safe	iy factors for de	sign loads		\/	- اما	and a later	~~	
Permanent p	Dartial Tactor	γfG = 1.35		Vari	able p	artial facto	זנ	$\gamma_{fQ} = 1.50$
Superimpos	sed vertical load	ling details	4					
Permanent l	JDL at top of wal	l g _k = 12.12 k	xN/m	Vari	able L	JDL at top	of wall	q _k = 7.50 kN/m
Eccent. of pe	ermanent UDL	e _{gu} = 0 mm		Ecce	ent. of	variable l	JDL	$e_{qu} = 0 mm$
Bendernes	s ratio of masor	nry wall - Sect	ion 5.5.1.4					
Blenderness	ratio limit	$\lambda_{\text{lim}} = 27$		Sler	derne	ess ratio		$\lambda = 27.0$
				PASS - S	lende	erness rat	io is less	than slenderness
				101.04 KN				
			_ ↓ 97	5►				
Permanent l	oad	$G_{kc1} = 50.40$) kN	Vari	able lo	bad		Q _{kc1} = 22.00 kN
Eccentricity	of load	e _{c1} = 0 mm		Leng	th of	load		L _{c1} = 250 mm

Height of load

Distance to nearest edge

Width of load

Distance to right edge

Address: 6 David Lane, Basford, Nottingham, NG6 0JU T. 0115 697 6006 | M. 07950 477550 | E. info@iktconsulting.co.uk | W. www.iktconsulting.co.uk Reg no. 12762351 | VAT No. 424 9257 84

 $w_{c1} = 100 \text{ mm}$

 $r_{11} = 0 \text{ mm}$

h_{c1} = **2700** mm

a₁₁ = **0** mm

<u>Roof Joists – RJ</u>

TIMBER JOIST ANALYSIS & DESIGN (EN1995-1-1:2004)

In accordance with EN1995-1-1:2004 + A2:2014 incorporating corrigendum June 2006 and the UK national annex

Member results summary	Unit	Capacity	Maximum	Utilisation	Result
Bearing stress	N/m	1.5	0.2	0.135	PASS
	m²				
Bending stress	N/m	10.8	4.7	0.435	PASS
	m²				
Shear stress	N/m m²	2.2	0.4	0.180	PASS
Deflection	mm	10.8	7.9	0.733	PASS

ANALYSIS

Loading

Self weight included (Permanent x 1)

Tedds calculation version 1.0.37

Integrity | Knowledge | Teamwork

Load combination factors

Load combination	Permane nt	pəsoduj	Snow	Wind
1.35G + 1.50Q (Strength)	1.35	1.50	0.00	0.00
1.00G + 1.00Q (Service)	1.00	1.00	0.00	0.00

Member Loads

Member	Load case	Load Type	Orientati on	Description
Member	Permanent	UDL	GlobalZ	0.32 kN/m at 0 m to 2.7 m
Member	Imposed	UDL	GlobalZ	0.3 kN/m at 0 m to 2.7 m

Results

Total deflection

1.35G + 1.50Q (Strength) - Total deflection

1 ★ ★ X Z

1.00G + 1.00Q (Service) - Total deflection

1 ▼ Z

Node deflections

Load combination: 1.35G + 1.50Q (Strength)

Node	Deflection		Rotation	Co- ordinate system
	X (mm)	Z	(0)	
1	0	0		
2	0	0	-0.40477	

Load combination: 1.00G + 1.00Q (Service)

Node	Deflection		Rotation	Co- ordinate system
	X	Z		
	(mm)	(mm)	(°)	
1	0	0	0.28502	
2	0	0	-0.28502	

2

Å

Total base reactions

Load case/combination	Force		
	FX	FZ	
	(kN)	(kN)	
1.35G + 1.50Q (Strength)	0	2.5	
1.00G + 1.00Q (Service)	0	1.7	

Element end forces

Load combination: 1.35G + 1.50Q (Strength)

Eleme nt	Length	Nodes	Axial force	Shear force	Moment
	(m)	Start/End	(kN)	(kN)	(kNm)
1	2.7	1	0	-1.2	0
		2	0	-1.2	0

Load combination: 1.00G + 1.00Q (Service)

Eleme nt	Length	Nodes	Axial force	Shear force	Moment
	(m)	Start/End	(kN)	(kN)	(kN <mark>m)</mark>
1	2.7	1	0	-0.9	0
		2	0	-0.9	0

Forces

Strength combinations - Moment envelope (kNm)

0.8

Strength combinations - Shear envelope (kN)

Member results

;

1.2

Envelope - Strength combinations

Member	Position	Shear force		Mon	nent
	(m)	(K	N)	(KN	lm)
Member	0	1.2 (max abs)		0 (min)	
	1.35	0		0.8 (max)	
	2.7	-1.2		0 (min)	

Tedds calculation version 2.2.20

-1.2

Member - Span 1

Partial factor for material properties and resistances

Partial factor for material properties - Table 2.3; $\gamma_M = 1.300$

Member details

Load duration - cl.2.3.1.2; Service class - cl.2.3.1.3;

Timber section details

Number of timber sections in member; Breadth of sections; Depth of sections;

Timber strength class - EN 338:2016 Table 1;

47x150 timber section

2

N = 1

C16

b = **47** mm

h = **150** mm

Medium-term

Cross-sectional area, A, 7050 mm² Section modulus, W_y , 176250 mm³ Section modulus, W₂, 55225 mm³ Second moment of area, I_v, 13218750 mm⁴ Second moment of area, Iz, 1297787 mm4 Radius of gyration, iy, 43.3 mm Radius of gyration, i, 13.6 mm Timber strength class C16 Characteristic bending strength, f_{m.k}, 16 N/mm² Characteristic shear strength, f_{v,k}, 3.2 N/mm² Characteristic compression strength parallel to grain, f_{c.0.k}, 17 N/mm² Characteristic compression strength perpendicular to grain, f c.90.k, 2.2 N/mm² Characteristic tension strength parallel to grain, f t.o.k 8.5 N/mm² Mean modulus of elasticity, E_{0,mean}, 8000 N/mm² Fifth percentile modulus of elasticity, E_{0.05}, 5400 N/mm² Shear modulus of elasticity, G_{mean}, 500 N/mm² Characteristic density, pk, 310 kg/m³ Mean density, $\rho_{\text{mean}},$ 370 kg/m³

Span details

Bearing length;

L_b = 100 mm

Modification factors	
Duration of load and moisture content - Table 3.1;	k _{mod} = 0.8
Deformation factor - Table 3.2;	$k_{\text{def}} = \boldsymbol{0.8}$
Bending stress re-distribution factor - cl.6.1.6(2);	km = 0.7
Crack factor for shear resistance - cl.6.1.7(2);	$k_{cr}=\boldsymbol{0.67}$
System strength factor - cl.6.6;	k _{sys} = 1.1

Consider Combination 1 - 1.35G + 1.50Q (Strength)

Check design at start of span

Check compression perpendicular to the grain - cl.6.1.5

Design perpendicular compression - major axis;	F _{c,y,90,d} = 1.23 kN
Effective contact length;	$L_{b,ef} = L_b + min(L_b, 30 mm) = 130 mm$
Design perpendicular compressive stress - exp.6.4;	$\sigma_{c,y,90,d}$ = $F_{c,y,90,d}$ / (b \times Lb,ef) = 0.201 N/mm^2
Design perpendicular compressive strength;	$f_{c,y,90,d} = k_{mod} \times k_{sys} \times f_{c.90.k} \ / \ \gamma_M = \textbf{1.489} \ N/mm^2$
	$\sigma_{c,y,90,d} / (k_{c,90} \times f_{c,y,90,d}) = 0.135$

PASS - Design perpendicular compression strength exceeds design perpendicular compression stress

Check shear force - Section 6.1.7

Design shear force;	F _{y,d} = 1.23 kN
Design shear stress - exp.6.60;	$\tau_{y,d} = 1.5 \times F_{y,d} \ / \ (k_{cr} \times b \times h) = \textbf{0.391} \ N/mm^2$
Design shear strength;	$f_{v,y,d} = k_{mod} \times k_{sys} \times f_{v.k} \ / \ \gamma_M = \textbf{2.166} \ N/mm^2$
	$\tau_{y,d} / f_{v,y,d} = 0.180$

PASS - Design shear strength exceeds design shear stress

Check design 1350 mm along span

Check bending moment - Section 6.1.6		
Design bending moment;	M _{y,d} = 0.83 kNm	
Design bending stress;	$\sigma_{m,y,d} = M_{y,d} / W_y = 4.71 \text{ N/mm}^2$	
Design bending strength;	$f_{m,y,d} = k_{mod} \times k_{sys} \times f_{m,k} / \gamma_M = 10.831 \text{ N/mm}^2$	
	σ _{m,y,d} / f _{m,y,d} = 0.435	
	PASS - Design bending strength exceeds design bending stress	3

Consider Combination 2 - 1.00G + 1.00Q (Service)

Check design 1350 mm along span

Check y-y axis deflection - Section 7.2		
Instantaneous deflection;	$\delta_y = 4.4 \text{ mm}$	
Quasi-permanent variable load factor;	ψ2 = 0.3	
Final deflection with creep;	$\delta_{y,Final} = \delta_y \times (1 + k_{def}) = 7.9 \text{ mm}$	
Allowable deflection;	$\delta_{y,Allowable} = L_{m1_s1} / 250 = 10.8 \text{ mm}$	
	$\delta_{y,Final} / \delta_{y,Allowable} = 0.733$	

PASS - Allowable deflection exceeds final deflection

Tedds calculation version 1.0.07

Floor Joists - FJ

TIMBER JOIST ANALYSIS & DESIGN (EN1995-1-1:2004)

In accordance with EN1995-1-1:2004 + A2:2014 incorporating corrigendum June 2006 and the UK national annex

Joist details

Description; Joist spacing; 47 x 175 C24 timber joists subject = **400** mm

-3000-

Forces input on Joist

Vertical permanent load on joist; Vertical imposed load on joist;

Joist loading details

Distributed loads

Vertical permanent load on joist; Vertical imposed load on joist;
$$\label{eq:FG_Joist} \begin{split} F_{G_Joist} = \textbf{0.60} \ kN/m^2 \\ F_{Q_Joist} = \textbf{2.00} \ kN/m^2 \end{split}$$

 $p_{G} = F_{G_Joist} \times s_{Joist} = 0.24 \text{ kN/m}$ $p_{Q} = F_{Q_Joist} \times s_{Joist} = 0.80 \text{ kN/m}$

Member results summary	Unit	Capacity	Maximum	Utilisation	Result
Bearing stress	N/m m²	1.7	0.4	0.228	PASS
Bending stress	N/m m²	16.2	7.4	0.453	PASS

Shear stress	N/m m²	2.7	0.6	0.237	PASS	
Deflection	mm	12	9.3	0.774	PASS	

ANALYSIS

Loading

Self weight included (Permanent x 1)

Load combination factors

Load combination		Imposed	Snow	Wind
1.35G + 1.50Q (Strength)	1.35	1.50	0.00	0.00
1.00G + 1.00Q (Service)	1.00	1.00	0.00	0.00

Member Loads

Member	Load case	Load Type	Orientati on	Description
Member	Permanent	UDL	GlobalZ	0,24 kN/m at 0 m to 3 m
Member	Imposed	UDL	GlobalZ	0.8 kN/m at 0 m to 3 m

Results

Total deflection

Tedds calculation version 1.0.37

Load combination: 1.00G + 1.00Q (Service)

Node	Deflection		Rotation	Co- ordinate system
	Х	Z		
	(mm)	(mm)	(°)	
1	0	0	0.29978	
2	0	0	-0.29978	

Total base reactions

Load case/combination	Force		
	FX	FZ	
	(kN)	(kN)	
1.35G + 1.50Q (Strength)	0	4.7	
1.00G + 1.00Q (Service)	0	3.2	

Element end forces

Load combination: 1.35G + 1.50Q (Strength)

Eleme nt	Length	Nodes	Axial force	Shear force	Moment
	(m)	Start/End	(kN)	(kN)	(kNm)
1	3	1	0	-2.4	0
		2	0	-2.4	0

Load combination: 1.00G + 1.00Q (Service)

Eleme nt	Length	Nodes	Axial force	Shear force	Moment
	(m)	Start/End	(kN)	(kN)	(kNm)
1	3	1	0	-1.6	0
		2	0	-1.6	0

Forces

2.4

Strength combinations - Moment envelope (kNm)

1.8

Strength combinations - Shear envelope (kN)

-2.4

Member results

Member	Position (m)	Shear force (kN)		Mor (kN	nent Im)
Member	0	2.4 (max abs)		0 (min)	
	1.5	0		1.8 (max)	
	3	-2.4		0 (min)	

Envelope - Strength combinations

Member - Span 1

;

Partial factor for material properties and resistances

Partial factor for material properties - Table 2.3; $\gamma_{M} = 1.300$

Member details

Load duration - cl.2.3.1.2; Service class - cl.2.3.1.3;

Medium-term

h = 175 mm

2

N = 1 b = **47** mm

C24

Timber section details

Number of timber sections in member;

Breadth of sections;

Depth of sections;

Timber strength class - EN 338:2016 Table 1;

47x175 timber section Cross-sectional area, A, 8225 mm² Section modulus, W_y, 239895.8 mm³ Section modulus, W₂, 64429 mm³ Second moment of area, Iv, 20990885 mm⁴ Second moment of area, I, 1514085 mm4 Radius of gyration, iv, 50.5 mm Radius of gyration, iz, 13.6 mm Timber strength class C24 Characteristic bending strength, fmk, 24 N/mm² Characteristic shear strength, fv.k, 4 N/mm2 Characteristic compression strength parallel to grain, f c.0.k, 21 N/mm² Characteristic compression strength perpendicular to grain, f c90 k, 2.5 N/mm² Characteristic tension strength parallel to grain, f_{t.o.k}, 14.5 N/mm² Mean modulus of elasticity, E_{0.mean}, 11000 N/mm² Fifth percentile modulus of elasticity, E 0.05, 7400 N/mm²

Span details

Bearing length;

 $L_{b}=\textbf{100} \ mm$

Consider Combination 1 - 1.35G + 1.50Q (Strength)

Modification factors

Duration of load and moisture content - Table 3.1;	k _{mod} = 0.8
Deformation factor - Table 3.2;	k _{def} = 0.8
Bending stress re-distribution factor - cl.6.1.6(2);	km = 0.7
Crack factor for shear resistance - cl.6.1.7(2);	k _{cr} = 0.67
System strength factor - cl.6.6;	k _{sys} = 1.1

Check design at start of span

Check compression perpendicular to the grain - cl.6.1.5

F_{c,y,90,d} = **2.355** kN Design perpendicular compression - major axis;

Tedds calculation version 2.2.20

Effective contact length; Design perpendicular compressive stress - exp.6.4; $\sigma_{c,y,90,d} = F_{c,y,90,d} / (b \times L_{b,ef}) = 0.385 \text{ N/mm}^2$ Design perpendicular compressive strength;

 $L_{b,ef} = L_b + min(L_b, 30 mm) = 130 mm$ $f_{c,y,90,d} = k_{mod} \times k_{sys} \times f_{c.90,k} / \gamma_M = 1.692 \text{ N/mm}^2$ $\sigma_{c,y,90,d} / (k_{c,90} \times f_{c,y,90,d}) = 0.228$

PASS - Design perpendicular compression strength exceeds design perpendicular compression stress

Check shear force - Section 6.1.7 Design shear force; Design shear stress - exp.6.60; Design shear strength;

F_{y,d} = 2.355 kN $\tau_{v,d} = 1.5 \times F_{v,d} / (k_{cr} \times b \times h) = 0.641 \text{ N/mm}^2$ $f_{v,y,d} = k_{mod} \times k_{sys} \times f_{v,k} / \gamma_M = 2.708 \text{ N/mm}^2$ $\tau_{y,d} / f_{v,y,d} = 0.237$ PASS - Design shear strength exceeds design shear stress

Check design 1500 mm along span

Check bending moment - Section 6.1.6 Design bending moment; Design bending stress; Design bending strength;

M_{y,d} = **1.766** kNm $\sigma_{m,y,d} = M_{y,d} / W_y = 7.361 \text{ N/mm}^2$ $f_{m,y,d} = k_{mod} \times k_{sys} \times f_{m,k} / \gamma_M = 16.246 \text{ N/mm}^2$ $\sigma_{m,y,d} / f_{m,y,d} = 0.453$ PASS - Design bending strength exceeds design bending stress

Consider Combination 2 - 1.00G + 1.00Q (Service)

Check design 1500 mm along span

Check y-y axis deflection - Section 7.2 Instantaneous deflection; Quasi-permanent variable load factor; Final deflection with creep; Allowable deflection;

 $\delta_{y} = 5.2 \text{ mm}$ $\psi_2 = 0.3$

 $\delta_{y,Final} = \delta_y \times (1 + k_{def}) = 9.3 \text{ mm}$

 $\delta_{y,Allowable} = Lm1_s1 / 250 = 12 mm$ $\delta_{y,\text{Final}} / \delta_{y,\text{Allowable}} = 0.774$

PASS - Allowable deflection exceeds final deflection

